Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Sci Total Environ ; 931: 172938, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703850

RESUMO

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.

2.
J Pharm Anal ; 14(3): 295-307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618252

RESUMO

Triterpenoids widely exist in nature, displaying a variety of pharmacological activities. Determining triterpenoids in different matrices, especially in biological samples holds great significance. High-performance liquid chromatography (HPLC) has become the predominant method for triterpenoids analysis due to its exceptional analytical performance. However, due to the structural similarities among botanical samples, achieving effective separation of each triterpenoid proves challenging, necessitating significant improvements in analytical methods. Additionally, triterpenoids are characterized by a lack of ultraviolet (UV) absorption groups and chromophores, along with low ionization efficiency in mass spectrometry. Consequently, routine HPLC analysis suffers from poor sensitivity. Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance. Considering the structural characteristics of triterpenoids, various derivatization reagents such as acid chlorides, rhodamines, isocyanates, sulfonic esters, and amines have been employed for the derivatization analysis of triterpenoids. This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids. Moreover, the limitations and challenges encountered in previous studies are discussed, and future research directions are proposed to develop more effective derivatization methods.

3.
Eur J Pediatr ; 183(5): 2391-2399, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448613

RESUMO

Prolonged screen time (ST) has adverse effects on autistic characteristics and language development. However, the mechanisms underlying the effects of prolonged ST on the neurodevelopment of children with autism spectrum disorder (ASD) remain unclear. Neuroimaging technology may help to further explain the role of prolonged ST in individuals with ASD. This study included 164 cases, all cases were divided into low-dose ST exposure (LDE group 108 cases) and high-dose ST exposure (HDE group 56 cases) based on the average ST of all subjects. Spatial independent component analysis (ICA) was used to identify resting state networks (RSNs) and investigate intra- and inter-network alterations in ASD children with prolonged ST. We found that the total Childhood Autism Rating Scale (CARS) scores in the HDE group were significantly higher than those in the LDE group (36.2 ± 3.1 vs. 34.6 ± 3.9, p = 0.008). In addition, the developmental quotient (DQ) of hearing and language in the HDE group were significantly lower than those in the LDE group (31.5 ± 13.1 vs. 42.5 ± 18.5, p < 0.001). A total of 13 independent components (ICs) were identified. Between-group comparison revealed that the HDE group exhibited decreased functional connectivity (FC) in the left precuneus (PCUN) of the default mode network (DMN), the right middle temporal gyrus (MTG) of the executive control network (ECN), and the right median cingulate and paracingulate gyri (MCG) of the attention network (ATN), compared with the LDE group. Additionally, there was an increase in FC in the right orbital part of the middle frontal gyrus (ORBmid) of the salience network (SAN), compared with the LDE group. The inter-network analysis revealed increased FC between the visual network (VN) and basal ganglia (BG) and decreased FC between the sensorimotor network (SMN) and DMN, SMN and ATN, SMN and auditory network (AUN), and DMN and SAN in the HDE group, compared with the LDE group. There was a significant negative correlation between altered FC values in MTG and total CARS scores in subjects (r = - 0.18, p = 0.018).  Conclusion: ASD children with prolonged ST often exhibit lower DQ of language development and more severe autistic characteristics. The alteration of intra- and inter-network FC may be a key neuroimaging feature of the effect of prolonged ST on neurodevelopment in ASD children.  Clinical trial registration: ChiCTR2100051141. What is Known: • Prolonged ST has adverse effects on autistic characteristics and language development. • Neuroimaging technology may help to further explain the role of prolonged ST in ASD. What is New: • This is the first study to explore the impact of ST on intra- and inter-network FC in children with ASD. • ASD children with prolonged ST have atypical changes in intra- and inter-brain network FC.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Tempo de Tela , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Estudos Transversais , Estudos Retrospectivos
4.
J Hazard Mater ; 470: 134142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555669

RESUMO

Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.


Assuntos
Cádmio , Poluentes Ambientais , Células Intersticiais do Testículo , Testículo , Testosterona , Ubiquitina-Proteína Ligases , Masculino , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Cádmio/toxicidade , Testosterona/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Poluentes Ambientais/toxicidade , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética
5.
Phytomedicine ; 128: 155512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460357

RESUMO

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Artrite Experimental , Artrite Reumatoide , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Naftoquinonas , Transdução de Sinais , Sinoviócitos , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Naftoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ratos , Artrite Experimental/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Ratos Sprague-Dawley
6.
Plant J ; 118(4): 1218-1231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323895

RESUMO

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Assuntos
Canfanos , Nudix Hidrolases , Proteínas de Plantas , Pirofosfatases , Pirofosfatases/metabolismo , Pirofosfatases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Canfanos/metabolismo , Brassicaceae/genética , Brassicaceae/enzimologia , Brassicaceae/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo
7.
Anal Chim Acta ; 1295: 342321, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38355235

RESUMO

Enhancing electrochemiluminescence (ECL) properties of luminophores is a hot direction in the current ECL field. Herein, we found that covalent rigidification of the aggregation-induced emission luminogens (AIEgens) TABE (TABE = tetra-(4-aldehyde-(1,1-biphenyl))ethylene) into covalent organic framework nanosheets (TABE-PZ-CON, PZ = piperazine) could result in stronger ECL emission than those of TABE aggregates and TABE monomers. We termed the interesting phenomenon "covalent rigidification-triggered electrochemiluminescence (CRT-ECL) enhancement". The superior ECL performance of TABE-PZ-CON not only because massive TABE luminogens were covalently assembled into the rigid TABE-PZ-CON network, which limited the intramolecular motions of TABE and hampered the radiationless transition, but also because the ultrathin porous TABE-PZ-CON significantly reduced the transportation distance of ions, electrons, and coreactants, which enabled the electrochemical excitation of more TABE luminogens and thus enhanced the ECL efficiency. Bearing in mind the exceptional ECL performance of TABE-PZ-CON, it was utilized as a high-efficient ECL indicator in combination with the DNA walker and duplex-specific nuclease-assisted target recycling amplification strategies to design an "off-on" ECL biosensor for the ultrasensitive assay of microRNA-21, exhibiting a favorable response range (100 aM-1 nM) with an ultralow detection limit of 17.9 aM. Overall, this work offers a valid way to inhibit the intramolecular motions of AIEgens for ECL enhancement, which gives a new vision for building high-performance AIEgen-based ECL materials, thus offering more chances for assembling hypersensitive ECL biosensors.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , MicroRNAs , Estruturas Metalorgânicas/química , Medições Luminescentes , Técnicas Eletroquímicas , Fotometria , MicroRNAs/química , Limite de Detecção
8.
ACS Pharmacol Transl Sci ; 7(2): 421-431, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357273

RESUMO

In traditional Chinese medicine, Radix Astragali has played a vital role in treating progressive fibrotic diseases. One of its main active components, astragaloside IV, is a promising anti-fibrotic treatment despite its extremely low bioavailability. Our study aimed to optimize sodium astragalosidate (SA) by salt formation to improve solubility and oral absorption for anti-fibrotic therapy in vivo. Isoproterenol-induced myocardial fibrosis rat models and obese BKS-db mice presenting diabetic kidney fibrosis were used in this study. Daily oral administration of SA (20 mg/kg) for 14 days ameliorated cardiac fibrosis by reducing collagen accumulation and fibrosis-related inflammatory signals, including TNF-α, IL-1ß, and IL-6. In db/db mice, SA (5,10, and 20 mg/kg per day for 8 weeks) dose-dependently alleviated lipid metabolism impairment and renal dysfunction when administered orally. Furthermore, Western blot and immunohistochemistry analyses demonstrated that SA treatment inhibited renal fibrosis by suppressing TGF-ß1/Smads signaling. Taken together, our findings provide the oral-route medication availability of SA, which thus might offer a novel lead compound in preclinical trial-enabling studies for developing a long-term therapy to treat and prevent fibrosis.

9.
J Pharm Pharmacol ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334976

RESUMO

OBJECTIVES: We examined the antirheumatoid effects of piperlongumine (PLM) on rat adjuvant-induced arthritis (AIA) and explored the underlying mechanisms involved. METHODS: PLM (2.5, 5, and 10 mg/kg) was administered intraperitoneally to AIA rats to assess its effectiveness. Blood, thymus, spleen, ankle joint, and synovial tissue samples were gathered for subsequent analyses, like enzyme-linked immunosorbent assay, thymus/spleen index measurement, ankle joint pathological examination, immunohistochemistry assay, polymerase chain reaction, and western blot assay. Moreover, the involvement of osteoprotegerin (OPG)/receptor activators of nuclear factor κB ligand (RANKL)/nuclear factor-κB (NF-κB) signaling was investigated. KEY FINDINGS: PLM effectively relieved inflammation and joint destruction in AIA rats, as indicated by reductions in hind paw swelling, arthritis index, thymus/spleen index, ankle joint pathological damage, production of TNF-α, IL-1ß, and IL-6 in both serum and synovium, and osteoclast formation. Also, PLM treatment raised OPG production, reduced RANKL expression, and elevated the OPG/RANKL ratio in synovial tissues. Furthermore, PLM prevented IκBα degradation and phosphorylation, resulting in a reduced expression of the nuclear NF-κB p65 protein in AIA rat synovial tissues. CONCLUSIONS: PLM demonstrated strong antiarthritic effects in rats with AIA by influencing the OPG/RANKL/NF-κB signaling pathway, highlighting its potential clinical relevance in treating rheumatoid arthritis.

10.
Life Sci ; 334: 122234, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931744

RESUMO

Intestinal ischemia-reperfusion (IIR) injury is associated with inflammation and oxidative stress, yet its precise mechanisms remain not fully understood. IIR injury is closely linked to the gut microbiota and its metabolites. The anti-inflammatory and antioxidant effects of Lactiplantibacillus plantarum are specific to IIR. In our study, we conducted a 30-day pre-treatment of SD rats with both a standard strain of Lactiplantibacillus plantarum and Lactiplantibacillus plantarum GL001. After a 7-day cessation of treatment, we induced an IIR injury model to investigate the mechanisms by which Lactiplantibacillus plantarum alleviates IIR damage. The results demonstrate that Lactiplantibacillus plantarum effectively mitigates the inflammatory and oxidative stress damage induced by IIR. Lactiplantibacillus plantarum GL001 can improve the gut microbiota by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. In IIR intestinal tissue, the levels of secondary bile acids are elevated. The content of the bacterial metabolite Calcimycin increases. Annotations of metabolic pathways suggest that Lactiplantibacillus plantarum GL001 can alleviate IIR damage by modulating calcium-phosphorus homeostasis through the regulation of parathyroid hormone synthesis, secretion, and action. Microbiota-metabolite correlation analysis reveals a significant negative correlation between calcimycin and Lactonacillus and a significant positive correlation between calcimycin and Shigella. There is also a significant positive correlation between calcimycin and secondary bile acids. Lactiplantibacillus plantarum GL001 can alleviate oxidative damage induced by IIR through improvements in gut microbiota and intestinal tissue metabolism.


Assuntos
Estresse Oxidativo , Traumatismo por Reperfusão , Ratos , Animais , Calcimicina/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Bactérias , Ácidos e Sais Biliares
11.
Nutr Clin Pract ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37873591

RESUMO

BACKGROUND: Studies in adults have shown that low baseline muscle mass at intensive care unit (ICU) admission was associated with poor clinical outcomes. However, no information on the relationship between baseline muscle quality or mass and clinical outcomes in critically ill children was found. METHODS: 3775 children were admitted to the pediatric ICU (PICU), 262 were eligible for inclusion. Abdominal computed tomography was performed to assess baseline skeletal muscle mass and quality. Patients were categorized to normal or low group based on the cutoff value for predicting hospital mortality of the skeletal muscle index (SMI; 30.96 cm2 /m2 ) and skeletal muscle density (SMD; 41.21 Hounsfield units). RESULTS: Body mass index (BMI) (18.07 ± 4.44 vs 15.99 ± 4.51) and BMI-for-age z score (0.46 [-0.66 to 1.74] vs -0.87 [-1.69 to 0.05]) were greater in the normal-SMI group, the length of PICU stay was longer in the low-SMI group (16.00 days [8.50-32.50] vs 13.00 days [7.50-20.00]), and the in-PICU mortality rate in the normal-SMI group (10.00%) was lower than the low-SMI group (22.6%). Children with low SMD had a higher in-PICU mortality rate (25.6% vs 7.7%), were younger (36.00 months [12.00-120.00] vs 84.00 months [47.50-147.50]) and weighed less (16.40 kg [10.93-37.25] vs 23.00 kg [16.00-45.00]). Mortality was greater in patients with lower SMD and prolonged hospital stay (log-rank, P = 0.007). SMD was an independent predictor for length of PICU stay and in-PICU mortality. CONCLUSIONS: Low baseline skeletal muscle quality in critically ill children is closely tied with a higher in-PICU mortality and longer PICU stay and is an independent risk factor for unfavorable clinical outcomes.

12.
ACS Macro Lett ; 12(11): 1423-1436, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37812608

RESUMO

Dispersity (D) as a critical parameter indicates the level of uniformity of the polymer molar mass or chain length. In the past several decades, the development of explicit equations for calculating D experiences a continual revolution. This viewpoint tracks the historical evolution of the explicit equations from living to reversible-deactivation polymerization systems. Emphasis is laid on displaying the charm of explicit D equations in batch reversible-deactivation radical polymerization (RDRP), with highlights of the relevant elegant mathematical manipulations. Some representative emerging applications enabled by the existing explicit equations are shown, involving nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer (RAFT) polymerization systems. Stemming from the several outlined challenges and outlooks, sustained concerns about the explicit D equations are still highly deserved. It is expected that these equations will continue to play an important role not only in traditional polymerization kinetic simulation and design of experiments but also in modern intelligent manufacturing of precision polymers and classroom education.

13.
Acta Pharmacol Sin ; 44(12): 2445-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580492

RESUMO

Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas. Disruptions in organelle homeostasis, including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress, have been implicated in human and rodent pancreatitis. Syntaxin 17 (STX17) belongs to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) subfamily. The Qa-SNARE STX17 is an autophagosomal SNARE protein that interacts with SNAP29 (Qbc-SNARE) and the lysosomal SNARE VAMP8 (R-SNARE) to drive autophagosome-lysosome fusion. In this study, we investigated the role of STX17 in the pathogenesis of AP in male mice or rats induced by repeated intraperitoneal injections of cerulein. We showed that cerulein hyperstimulation induced AP in mouse and rat models, which was characterized by increased serum amylase and lipase activities, pancreatic edema, necrotic cell death and the infiltration of inflammatory cells, as well as markedly decreased pancreatic STX17 expression. A similar reduction in STX17 levels was observed in primary and AR42J pancreatic acinar cells treated with CCK (100 nM) in vitro. By analyzing autophagic flux, we found that the decrease in STX17 blocked autophagosome-lysosome fusion and autophagic degradation, as well as the activation of ER stress. Pancreas-specific STX17 knockdown using adenovirus-shSTX17 further exacerbated pancreatic edema, inflammatory cell infiltration and necrotic cell death after cerulein injection. These data demonstrate a critical role of STX17 in maintaining pancreatic homeostasis and provide new evidence that autophagy serves as a protective mechanism against AP.


Assuntos
Ceruletídeo , Pancreatite , Masculino , Camundongos , Animais , Ratos , Humanos , Doença Aguda , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Pancreatite/induzido quimicamente , Autofagia/fisiologia , Proteínas SNARE/metabolismo , Edema
15.
Plant Physiol ; 193(2): 1244-1262, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37427874

RESUMO

Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.


Assuntos
Alquil e Aril Transferases , Terpenos , Humanos , Terpenos/metabolismo , Difosfatos , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Plantas/metabolismo , Alquil e Aril Transferases/genética
16.
World J Gastrointest Oncol ; 15(6): 1073-1085, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37389110

RESUMO

BACKGROUND: Computed tomography (CT) imaging features are associated with risk stratification of gastric gastrointestinal stromal tumors (GISTs). AIM: To determine the multi-slice CT imaging features for predicting risk stratification in patients with primary gastric GISTs. METHODS: The clinicopathological and CT imaging data for 147 patients with histologically confirmed primary gastric GISTs were retrospectively analyzed. All patients had received dynamic contrast-enhanced CT (CECT) followed by surgical resection. According to the modified National Institutes of Health criteria, 147 lesions were classified into the low malignant potential group (very low and low risk; 101 lesions) and high malignant potential group (medium and high-risk; 46 lesions). The association between malignant potential and CT characteristic features (including tumor location, size, growth pattern, contour, ulceration, cystic degeneration or necrosis, calcification within the tumor, lymphadenopathy, enhancement patterns, unenhanced CT and CECT attenuation value, and enhancement degree) was analyzed using univariate analysis. Multivariate logistic regression analysis was performed to identify significant predictors of high malignant potential. The receiver operating curve (ROC) was used to evaluate the predictive value of tumor size and the multinomial logistic regression model for risk classification. RESULTS: There were 46 patients with high malignant potential and 101 with low-malignant potential gastric GISTs. Univariate analysis showed no significant differences in age, gender, tumor location, calcification, unenhanced CT and CECT attenuation values, and enhancement degree between the two groups (P > 0.05). However, a significant difference was observed in tumor size (3.14 ± 0.94 vs 6.63 ± 3.26 cm, P < 0.001) between the low-grade and high-grade groups. The univariate analysis further revealed that CT imaging features, including tumor contours, lesion growth patterns, ulceration, cystic degeneration or necrosis, lymphadenopathy, and contrast enhancement patterns, were associated with risk stratification (P < 0.05). According to binary logistic regression analysis, tumor size [P < 0.001; odds ratio (OR) = 26.448; 95% confidence interval (CI): 4.854-144.099)], contours (P = 0.028; OR = 7.750; 95%CI: 1.253-47.955), and mixed growth pattern (P = 0.046; OR = 4.740; 95%CI: 1.029-21.828) were independent predictors for risk stratification of gastric GISTs. ROC curve analysis for the multinomial logistic regression model and tumor size to differentiate high-malignant potential from low-malignant potential GISTs achieved a maximum area under the curve of 0.919 (95%CI: 0.863-0.975) and 0.940 (95%CI: 0.893-0.986), respectively. The tumor size cutoff value between the low and high malignant potential groups was 4.05 cm, and the sensitivity and specificity were 93.5% and 84.2%, respectively. CONCLUSION: CT features, including tumor size, growth patterns, and lesion contours, were predictors of malignant potential for primary gastric GISTs.

17.
J Pharm Biomed Anal ; 231: 115414, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141677

RESUMO

Radix Astragali (RA) is commonly used in Asian herbal therapy or food supply, and astragalosides and flavonoids are its major components with diverse pharmaceutical effects. To provide new information on the potential cardiovascular benefits of RA administered orally, the bioaccessibility of these compounds with relevant in vitro digestion parameters was determined for four digestion phases (oral, gastric, small and large intestines) by ultrahigh-performance liquid chromatography quadrupole time-of-flight-mass spectrometry (UPLC-Q-TOF/MS). Meanwhile, we compared the effects of digestion products on advanced glycation end products (AGEs)-induced intracellular reactive oxygen species (ROS) levels in a human arterial endothelial cells (HAECs) model, and studied the potential of RA against oxidative stress-related cardiovascular disease. The changes of saponins and flavonoids composition and antioxidant activity after digestion in intestines were mainly due to the astragaloside IV (AS-IV) biosynthesis involving saponins acetyl isomerization and deacetylation, and the flavonoid glycosides converted to aglycone by deglycosylation processes. All these results suggest that acetyl biotransformation of RA in small intestine directly influenced the response to oxidative stress, and might provide a reference for elucidation of the multi-component action after oral RA in cardiovascular health care.


Assuntos
Medicamentos de Ervas Chinesas , Saponinas , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Células Endoteliais/química , Saponinas/química , Medicamentos de Ervas Chinesas/química , Flavonoides/análise , Biotransformação , Digestão
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122545, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863079

RESUMO

As a new type of fluorescent nanomaterial, chiral carbon quantum dots (CCQDs) have the advantages of wide source, good water solubility and high chemical stability, and have been widely used in drug detection, bioimaging and chemical sensing. In this work, a chiral dual-emission hybrid material fluorescein/CCQDs@ZIF-8 (1) was synthesized by in-situ encapsulation strategy. Luminescence emission position of CCQDs and fluorescein are almost unchanged after the encapsulation into ZIF-8. The luminescent emissions of CCQDs and fluorescein can be observed to be located at 430 nm and 513 nm, respectively. When 1 is soaked in pure water, ethanol, dimethylsulfoxide, DMF, DMA and targeted substances solution for 24 h, 1 can maintain its structural stability. Photo-luminescent (PL) studies show that 1 can discriminate p-phenylenediamine (PPD) from m-phenylenediamine (MPD) and o-phenylenediamine (OPD), which can detect the presence of PPD with high sensitivity and selectivity (ratiomeric fluorescent probe with KBH: 1.85 × 103 M-1 and detection limit: 8.51 µM). Further, 1 also effectively distinguish the oxidized product of these phenylenediamine(PD) isomers. 1 can be used as a "turn-off" fluorescent probe to detect oxidized product of PPD (ratiomeric fluorescent probe with KSV: 6.82 × 102 M-1 and detection limit: 0.112 mM) and a "turn-on" fluorescent probe to detect oxidized product of MPD (ratiomeric fluorescent probe: KBH: 1.65 × 103 M-1 and detection limit: 35.03 µM) and oxidized product of OPD (ratiomeric fluorescent probe: KBH: 2.40 × 106 M-1 and detection limit: 0.105 µM). Further, for the convenience of practical application, 1 can be developed as fluorescence ink and be prepared into a mixed matrix membrane. When the target substances are gradually added to the membrane, significant luminescence change with obvious color change can be observed.

19.
Explore (NY) ; 19(4): 607-610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36797083

RESUMO

OBJECTIVE: In this study, inverse moxibustion was performed at the Baihui and Dazhui points in patients with ischemic stroke, and the Hamilton Depression Rating Scale 17 (HAMD) score, National Institute of Health Stroke Scale (NIHSS) score, modified Barthel index (MBI) score, and incidence of post-stroke depression (PSD) were observed. METHODS: Eighty patients with acute ischemic stroke were enrolled and randomly divided into two groups. All enrolled patients were given routine treatment for ischemic stroke, and those in the treatment group were also given moxibustion at the Baihui and Dazhui points. The course of treatment was four weeks. The HAMD, NIHSS, and MBI scores of the two groups were evaluated before and four weeks after the treatment. The differences between the groups and the incidence of PSD were evaluated to determine the effect of inverse moxibustion at the Baihui and Dazhui points on the HAMD, NIHSS, and MBI scores and prevention of PSD in patients with ischemic stroke. RESULTS: After the four weeks of treatment, the HAMD and NIHSS scores of the treatment group were lower than those of the control group, their MBI was higher than that of the control group, and their incidence of PSD was statistically significantly lower than that of the control group. CONCLUSION: Inverse moxibustion at the Baihui acupoint in patients with ischemic stroke can effectively promote the recovery of neurological function, improve depression, and reduce the incidence of PSD and should be considered for application in clinical practice.


Assuntos
Terapia por Acupuntura , AVC Isquêmico , Moxibustão , Acidente Vascular Cerebral , Humanos , Pontos de Acupuntura , Depressão/etiologia , Depressão/prevenção & controle , Acidente Vascular Cerebral/complicações
20.
Acta Pharmacol Sin ; 44(2): 381-392, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35840657

RESUMO

Acute kidney injury (AKI) refers to a group of common clinical syndromes characterized by acute renal dysfunction, which may lead to chronic kidney disease (CKD), and this process is called the AKI-CKD transition. The transcriptional coactivator YAP can promote the AKI-CKD transition by regulating the expression of profibrotic factors, and 14-3-3 protein zeta (14-3-3ζ), an important regulatory protein of YAP, may prevent the AKI-CKD transition. We established an AKI-CKD model in mice by unilateral renal ischemia-reperfusion injury and overexpressed 14-3-3ζ in mice using a fluid dynamics-based gene transfection technique. We also overexpressed and knocked down 14-3-3ζ in vitro. In AKI-CKD model mice, 14-3-3ζ expression was significantly increased at the AKI stage. During the development of chronic disease, the expression of 14-3-3ζ tended to decrease, whereas active YAP was consistently overexpressed. In vitro, we found that 14-3-3ζ can combine with YAP, promote the phosphorylation of YAP, inhibit YAP nuclear translocation, and reduce the expression of fibrosis-related proteins. In an in vivo intervention experiment, we found that the overexpression of 14-3-3ζ slowed the process of renal fibrosis in a mouse model of AKI-CKD. These findings suggest that 14-3-3ζ can affect the expression of fibrosis-related proteins by regulating YAP, inhibit the maladaptive repair of renal tubular epithelial cells, and prevent the AKI-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Camundongos , Animais , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fibrose , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...